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Abstract

A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Ex-
tended Kalman (SEEK) filter equations (Pham et al. 1998), is used to assimilate observed
fields of the surface wind stress, sea surface temperature and sea level into the nonlinear
coupled ocean-atmosphere model of Zebiak and Cane (1987). The SEEK filter projects the
Kalman Filter equations (Kalman and Bucy 1960) onto a subspace defined by the eigenvalue
decomposition of the error forecast matrix, allowing its application to high dimensional sys-
tems.

The Zebiak and Cane model couples a linear reduced gravity ocean model (Cane and
Patton 1984) with a single vertical mode atmospheric model of Zebiak (1986). The com-
patibility between the simplified physics of the model and each observed variable is studied
separately and together. The results show the ability of the model to represent the simulta-
neous value of the wind stress, SST and sea level, when the fields are limited to the latitude
band 10°S - 10°N.

In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction
model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the
thermocline depth anomaly. An estimation of the error of these modes is derived from the
projection of an estimation of the sea level error over such modes. This method gives a value
of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of
the thermocline depth.

The ability of the method to reconstruct the state of the equatorial Pacific and predict

its time evolution is demonstrated. The method is shown to be quite robust for predictions



up to six months, and able to predict the onset of the 1997 warm event fifteen months before

its occurrence.



1. Introduction

The prediction of the El Nifio - Southern Oscillation (ENSO) and its relation with global
climate anomalies is one of the major research efforts in short-term climate forecasting. As
the large-scale climatic variability of the ENSO can be described in terms of low frequency
modes which are successfully modeled by simple linear models, the studies of ENSO have
been supported by a large hierarchy of models, ranging from complex general circulation
models (e.g. Philander et al. 1992; Latif et al. 1993; Kirtman et al. 1996) to one-layer,
reduced-gravity models (eg: Philander et al. 1984; Gill 1985; Hirst 1986; Cane and Zebiak
1987; Battisti 1988; Battisti and Hirst 1989).

The success of the simplified models is due to a combination of two facts. First, the fact
that the inertia (“memory”) of the tropical, coupled ocean-atmosphere system lies in the
upper ocean (for more details see Neelin et al. 1994), which has much longer time scales
than the atmospheric component. Second, the fact that the equatorial ocean is characterized
by a stable density structure consisting of a warm upper layer and a cool deep layer separated
by a sharp, near-surface pycnocline. This situation can be well described by the reduced
gravity models which assume that the ocean consists of a thin surface layer of density p
overlaying an infinitely-deep, motionless lower layer of density p + Ap.

The Zebiak and Cane model (Zebiak and Cane 1987), hereafter named ZC, is a nonlinear
model for the anomalies of the system about a basic state derived from monthly mean

climatology of sea surface temperature (SST), surface winds and thermocline depths in the
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tropical Pacific. Although this model was originally developed for process studies (Cane et
al. 1986) it gave the first successful forecast of an ENSO event and it has since been used
routinely in real-time ENSO forecasts (Latif et al. 1998).

As the memory of the coupled system lies in the ocean, the initialization of the several
ENSO prediction systems has been focused mainly on the ocean component, in accord with
the hypothesis that the coupled state evolves (in a deterministic way) from an initial state
determined by the thermal state of the upper-ocean (Cane et al. 1986; Xue et al. 1994; Ji
et al. 1995; Fischer et al. 1995).

In the case of the ZC model, Cane et al. (1986) use an initialization procedure in which
the ocean component is forced by observed wind stresses starting in January 1964 and ending
at the time when the forecast begins. Then, the computed SST anomalies are used to run
the atmospheric component. The final states from the uncoupled component models are
used as the initial conditions for a forecast with the model run in a purely coupled manner.
Using this method, the initial conditions of the SST and the winds are assumed to be in
accord with the thermocline depth but not necessarily with their current observed values
(Cane et al. 1986).

An improved procedure was developed by Chen et al. (1995) allowing the complete inter-
action between both ocean and atmospheric components during the initialization process. In
their procedure, the model wind stress is relaxed towards the observed values by introducing
a nudging term in the wind stress equations of the atmospheric model during the initial-
ization. This nudging approach reduces both the error of the initial condition, and some of

the small-scale, high-frequency modes appearing when the ocean component is forced by ob-
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served wind stress (Chen et al. 1995). As a result, the skill of the ENSO forecasts is greatly
improved. This methodology has been used to perform operational ENSO forecasts. This
method, however, failed to predict the 1997-98 ENSO event, showing the need of further
improvements in the physics of the model (Kleeman 1993; Dewitte and Perigaud 1996), the
assimilation method (Kleeman et al 1995), or the quality of the data as it only relied on
wind observations (Chen et al. 1999).

The positive impact of assimilating subsurface thermal data in a complex GCM model
was shown by Rosati et al. (1997). Kleeman et al. (1995) improved the initialization of the
intermediate coupled model of Kleeman (1993) by using the adjoint approach to assimilate
subsurface thermal data.

In the case of the ZC model, Chen et al. (1998,1999) study the influence of either new
wind fields or tide-gauge observations to improve the thermocline structure at the initial
time. Both approaches have been able to predict retrospectively the 1997-98 El Nifio, with
no need to change the physics of the coupled model.

The impact of SSH observations has been also studied by Xue et al. (2000, manuscript
submitted to J. Climate) using a linear Markov model best fit to the ZC (Blumenthal 1991).
Their results indicate that the prediction skill of the Markov model is better when the sea
level information is used during the training period.

The work presented here follows a similar vein, but with emphasis on an advanced as-
similation methodology, multivariate data sets, and a coupled initialization approach. This
is accomplished by applying a reduced order Kalman filter to assimilate gridded fields of

SST (Reynolds and Smith 1994), the Florida State University (FSU) wind stress analysis



(Stricherz et al. 1992) and the sea surface height (SSH) anomalies (Busalacchi et al. 1994)
into the ZC model. In a reduced gravity model, the upper-layer depth D can be related to
the SSH (Gill 1982) by

D(z,y,t) = fI;SSH(x,y,t) (1)

Then, the thermocline depth information is directly assimilated into the ZC model in terms
of the Kelvin and Rossby modes. This method differs from the indirect assimilation used
by Chen et al. (1998) who nudge the Kelvin and Rossby modes of the coupled model to
the modes derived from a previous assimilation of the sea level in the stand-alone Cane and
Patton (1984) ocean model.

This paper represents the first attempt of a direct assimilation of multiple fields in the
fully nonlinear ZC model. Because of the simplified physics of the model, the model shows
discrepancies with each one of the observed fields (Perigaud and Dewitte 1996). These
discrepancies increase when these fields are considered simultaneously. Thus, a preliminary
step must be the study of the compatibility between the observations and the model.

The data used in this study are presented, in section 2. Section 3 presents a brief review
of the ZC model and the multivariate EOF basis used to reduce the degrees of freedom of
the assimilation method. The reduced order Kalman filter is presented in section 4. The
compatibility between the data and the model is presented is section 5. The method used to
determine the confidence of each field is presented in section 6. The assimilation experiments,

the measure of the forecast skill and several sensitivity studies are described in section 7.
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Finally, a summary and concluding discussion are given in section 8.

2. The data

a. FSU winds

The wind fields used here come from the monthly pseudo-stress analysis from merchant
ship observations provided by the Florida State University (Stricherz et al. 1992). Hereafter,
these data will be referred to as FSU winds. Research quality pseudo-stresses are available
until 1997. Pseudo-stresses for 1998 are obtained from the quick-look product. Following
Stricherz et al. (1992), a drag coefficient Cp = 1.6-1072 is used to compute the wind stresses.

Monthly anomalies are computed from the four years running mean, consistent with the
methodology employed by Cane et al (1986). That is, at each month, the reference state is
obtained by the mean between the current month and the respective month for the three
previous years. This methodology is used to remove the long term trend of the data (Zebiak

1989). Finally, field anomalies are filtered with a 1-2-1 filter in latitude, longitude and time.

b. Reynolds SST

Maps of the SST from November 1981 to De.cernber 1998 are derived from the optimum
interpolated SST analysis of Reynolds and Smith (1994). Anomaly fields are constructed
from the monthly mean field of the Reynolds fields during November 1961 and December

1996. A 1-2-1 filter in latitude, longitude and time is applied to the anomaly fields.

c. TOPEX/Poseidon altimetry
Monthly anomalies of the thermocline depth are derived from the TOPEX/POSEIDON

(T/P) sea level fields (Busalacchi et al. 1994). The long term surface topography anomaly
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maps are used to construct monthly mean maps from January 1993 to December 1996. Then,
equation (1) is used to compute the thermocline depth.

Because the ZC model projects the dynamic equations onto the equatorial modes, we
have decided to project the thermocline depth onto the equatorial Kelvin and several Rossby
modes using the method described in Boulanger and Menkes (1995). Once the coefficients of
the several Rossby modes are computed, the Rossby component of the thermocline depth is
constructed by a combination of the Rossby modes. This methodology has the advantage of
decomposing the sea level observations into prognostic variables of the model, diminishing
the possible impact of the incompatibilities between the observations and the simplified
physics of the model. In section 5, the compatibility between the physics of the model and
the different Rossby modes will be examined.

In this first application of a reduced order Kalman Filter, the analysis period is limited
to January 1993 - December 1998. This is the time period for which comprehensive and
coincident fields of T/P sea level, wind stress and SST observations are available for the
model domain.

The temporal evolution of the meridional average of the zonal wind stress, the Kelvin
amplitude, the first Rossby mode, and the SST anomalies are given in Fig. 1. A positive
value of the wind stress shows the presence of westerly anomalies (weakening the Walker
circulation in the equatorial Pacific). A positive value of the thermocline depth indicates a
downwelling, associated with an increase of SST in the east.

A cursory examination of plots in Fig. 1 reveals the basic characteristics of the equatorial

Pacific dynamics, as the large-scale nature of the warm/cold oscillations. Also, the high



correlation between the SST and the thermocline depth justifies the parameterization of
vertical mixing in the SST equation of the ZC model. Finally, the correlation between
western wind stress anomalies with the eastern sea surface temperature anomalies suggests
how local SST changes are related to remote forcing.

During the period Jan 93 - May 95, westerlies are present in the western Pacific extend-
ing periodically towards the central Pacific where the anomalous wind is easterly. These
easterlies in the eastern side of the basin inhibit the propagation of the downwelling Kelvin
waves generated by the central westerlies, limiting the warming of the eastern waters. After
May 95, easterlies are present over the entire equatorial Pacific, indicating stronger trade
winds. Under these conditions, an upwelling Kelvin wave excited in the central Pacific will be
amplified during its eastward travel, causing a cooling of the equatorial SST. The maximum
strength of the central trades is observed at the beginning of 1996. Then, the wind anomalies
decrease and finally, reverse to westerlies. The amplitude of the westerlies increase rapidly
and propagate to the eastern region, amplifying the downwelling Kelvin waves during all of
1997, thereby warming the central and eastern Pacific water. As the downwelling Kelvin
waves propagate into the eastern equatorial Pacific, an upwelling wave is present in the cen-
tral Pacific since October 1997 preceding the termination of the warm event on December
1997. The origin of this upwelling Kelvin wave (generated by the reflection of Rossby waves
at the western boundary and/or excited by the winds) is not provided by the plots in Fig.

1.

3. Data error estimates
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As the Kalman filter is a weighted combination of a first guess and observations, a measure
of the confidence of the observations has to be specified a priori. A simple estimation of the
observation errors is given here.

Following Shriver and O’Brien (1995) the mean wind speed over the tropical Pacific

1 2

is approximately 7 m s~!, or 49 m? s in pseudostress units. The error in anemometer
measurements of wind speed from moored buoys is approximately 10%. The error associated
with estimates of wind speed and direction is larger than that. Therefore, an optimistic
measure of the error of the wind speed can be given as 10% of the mean wind speed, i.e., 4.9
m? s7! = 0.094 dyn cm~2.

McPhaden et al. (1998) have verified the accuracy of the optimum interpolation SST
analysis of Reynolds and Smith (1994) using independent data. They compute the root mean
square (rms) between the monthly analyzed fields and in situ TOGA-TAO moorings at the
equator at three different locations (110°W, 140°W, and 165°E). The rms was computed
from January 1982 to January 1993. The mean rms differences at each location are 0.38°C,
0.39°C, and 0.24°C respectively. The SST anomaly error used here is obtained as the mean
of these three values, i.e. 0.34 °C.

Cross correlation between T/P altimeter data and dynamical topography fields from
TOGA/TAO data show RMS differences of 4 cm in the equatorial region, but higher values
off the equator (Busalacchi et al. 1994). Smaller error measures have been reported on
monthly and longer time-scales, but a value of 4 cm will be used here, corresponding to an

error of 7 m for the thermocline depth.

As the Kelvin and the Rossby components of the thermocline depth are assimilated
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separately, a distinct error value has to be given to the assimilation algorithm. Here, we
compute an equipartition of the thermocline depth error on two components by assuming
that the confidence of the decomposition algorithm is similar for each wave. This is not
really true because of the fact that high Rossby modes have their maximum off the equator,
where the reduced gravity approximation is less accurate. Thus, our hypothesis is valid only
as the reduced gravity approximation is valid. Furthermore, assuming that the errors of the
Kelvin and Rossby modes have zero mean and are uncorrelated, the error variance can be

described as
<el>=<al>Pi(y)+ . <al>YPiy) (2)

because of the following relations

<ap>=<a,>= 0, n=1,...

<Ay, > = < Aply > = 0 n#m

where ¥ (y) is the meridional structure of the Kelvin wave, ¢,(y) the meridional structure
of the n-th Rossby wave, and ax and a, is the amplitude of these modes.

The algorithm of Boulanger and Menkes (1996) is used to solve equation (2). The left
hand side term i1s now a constant for all the latitudes. A minimum of 8§ Rossby modes
has to be used for a reasonable reconstruction of such a constant function over the latitude
band of [10°S-10°N]. The error associated with the Kelvin coefficient is obtained directly
by this procedure. The error of the Rossby component is obtained by the longitudinal
average of the second term on the right hand side. Figure 2 shows the errors of the Kelvin

amplitude coefficient (solid line), and the error of the Rossby field (dashed line). The error
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estimates converge as the number of Rossby modes increases. From the asymptotic limits,
er = (< af >)Y? = 12, and ¢, = 6 m. As the Kelvin and Rossby waves are prognostic
variables of the ZC model (Zebiak and Cane 1987), the sensitivity to these values will be

examined later.

4. The model

The standard configuration of the ZC model is used here. The ocean domain is a rect-
angular basin limited by 30°S-30°N and 124°E-80°W. Details of the model equations can
be found in Zebiak and Cane (1987) and Battisti (1988), so only a brief description of the
model is given here.

The dynamical model is a single-layer, reduced-gravity, anomaly model on the equatorial
B3-plane focusing only on the seasonal and interannual time scales. The ocean model has
been simplified to determine only a subclass of all the possible motions: the low-frequency,
long zonal-scale equatorial Kelvin and Rossby waves forced by an anomalous surface wind
stress (Cane and Patton 1984). As the Ekman component of the surface velocity is not
negligible the surfac¢e layer is divided into two sub-layers. The upper sub-layer has constant
thickness and is directly acted upon by the wind. The SST is calculated separately through
a nonlinear equation, including three-dimensional advection, but it does not have a direct
feedback to the ocean dynamics. The atmospheric model is based on the steady-state, linear
model of a thermally forced tropical atmosphere (limited to a single vertical mode) of Gill
(1980). The forcing of the atmosphere is given by a local heating depending only on the

SST and a second term introduced to simulate the fact that the heating due to the low-level
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moisture convergence anomaly is not dependent on the SST alone, but also on the wind
convergence (Zebiak 1986).

Due to the special role of SST, the different processes in the thermodynamic equation
have been carefully parameterized. The heat flux anomaly is assumed to be proportional to
the local SST anomaly, acting always to damp the temperature towards its climatological
mean state (Zebiak and Cane 1987). The temperature is affected by vertical advection only in
the presence of upwelling. The entrained anomalous temperature is defined by an analytical
equation that is a function of the thermocline motions, adjusted to fit the observations (Cane
and Zebiak 1985).

The time-step of the ocean model is 10 days. As the atmospheric model gives the steady-
state solution associated with each SST field, the atmosphere may adjust too rapidly to the
ocean changes. To avoid this, the ZC model allows a time-dependency of the moisture term
of the atmospheric heating. The change of heating is computed every time step. Then, the
assumed background convergence is the total convergence at the previous time-step, rather
than the mean convergence as in the steady-state model. However, this procedure could allow
the development of small scale anomalies that may persist and become completely unrelated
to subsequent SST fields ( Zebiak and Cane 1987). It has been shown that the method used
to filter out these unrealistic anomalies can modify the behavior of the model. Zebiak and
Cane (1986) recalculated the atmospheric anomalies when the temperature anomalies (given
by Nino-3 SST) were small. This procedure favored a period of the warm events close to 4
years.

In spite of the success of the model to simulate and predict the evolution of the Nifio-3

13



SST, the descriptive skill of the model can be seriously affected by its simplicity: the lack of
any variability generated at the mid-latitudes, the absence of the 30-60 day waves (Cane et
al. 1986), the coarse resolution of the model distorting the simulation of coastal upwelling
processes in the eastern Pacific (Cane and Zebiak 1985), and the simplified relation between
the atmospheric heating and SST (Zebiak 1986; Dewitte and Perigaud 1996). Therefore,
dynamical incompatibilities between the model and the observations can be important, par-
ticularly in the off equatorial region. This has a direct effect on assimilation algorithms.
For example, the nudging constant of Chen et al. (1995) has a meridional dependency to
take account of the fact that the winds generated by the model are less accurate away from
the equator. The nudging term gives more weight to the observations in the off-equatorial
regions, allowing the observations to modify the physics of the atmospheric model where the

model is less accurate.

a. The multivariate EOFs

The statistical properties of the coupled model are studied in terms of multivariate EOFs
of a set of states obtained from a control run of the model. The coupled model is integrated
from rest, with an initial wind stress anomaly of 0.5 dyn/cm? is imposed during the first
four months in the region 163°E - 163°W and 5°S - 5°N. After this period of time, the model
is integrated in a coupled manner for 200 years.

To compute a set of multivariate Empirical Orthogonal Functions (EOF), a multivariate

state vector is defined to express the state of the system:

X = (T7 Tz’Ty’ u’ v’ k’ h) uﬂ—) va’ y07 q)’ (3)
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where T represents the sea surface temperature; 7, and 7, are the zonal and meridional
components of the wind stress; u, and v, are the zonal and meridional components of
surface wind; k is the amplitude of the equatorial Kelvin wave, h is the Rossby component
of the upper layer depth, u and v are the zonal and meridional components of the depth
integrated current anomalies between the thermocline and surface, y° is the surface wind
divergence and q is the atmospheric heating. All the variables are normalized by the mean
standard deviation of each one during the 200 years of simulation. The number of components
of the state vector (3) is 35457.

A set of 107 multivariate EOFs is constructed from the monthly mean states during
the last 115 years. Figure 3 shows the eigenvalue spectrum of the covariance matrix. The
95% confidence levels, indicated by the dashed line have been calculated from a Monte
Carlo simulation of 100 eigenvalue decomposition of individual covariance matrices contain-
ing randomly generated Gaussian variables of zero mean and unit variance (Overland and
Preisendorfer 1982). Only the first 12 multivariate EOFs pass the confidence level. That
is, this rule states that we cannot distinguish the multivariate EOFs of order higher than
12 from ones generated by a spatially and temporally uncorrelated random process. Such
a small number is due to the large amount of variability explained by the first few EOF's:
The first multivariate EOF explains 42% of the variability of the model during the 115 years
considered. The second and third EOFs explain more than 15% and 9% respectively. More
than 90% of the variability of the system is explained by the first 14 modes.

Figures 4-5 show the SST, wind stress, Kelvin amplitude and Rossby component associ-

ated with the first two multivariate EOFs. The first mode (when considered with positive
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sign) corresponds to a warming of the eastern equatorial Pacific. The associated wind stress
corresponds to a weakening of the trades, i.e. a weakening of the Walker circulation, while
the Hadley circulation is increased in the eastern Pacific. Both effects tend to increase the
wind convergence east of the dateline. This convergence is maximum near 110°W. In this
region, the Kelvin amplitude is maximum, corresponding to an increase of the thermocline
depth. In this first multivariate mode, both Kelvin and Rossby components of the ther-
mocline act together to increase the depth of the thermocline in the eastern Pacific and to
decrease the depth of the thermocline in the western Pacific. The Kelvin wave associated
with this mode represents a downwelling Kelvin wave reaching the eastern boundary. The
Rossby wave corresponds to an upwelling wave off the western boundary. This pattern of
circulation is characteristic of the warm phase of ENSO, the El Nifio phenomenon (Battisti
1988).

The SST of the second multivariate EOF also corresponds to a warming of the surface
waters east of the dateline. The main differences with the SST pattern of the first EOF are
the lower amplitude of the warming, and the weak zonal gradients near the equator, compared
with the strong meridional gradients. This increase of the SST anomalies is not produced
by an east/west tilting of the thermocline, but rather a meridional structure corresponding
to an increase of the thermocline depth near the equator and a decrease at higher latitudes.

The zonal structure of the field is weak and concentrated mainly east of the dateline.

5. Compatibility between data and model

The assimilation experiments presented below use multivariate EOFs of the model to

16



extrapolate the information from the available observations y° to each component of the
state vector x. As the observations can be incompatible with the simplified dynamics of the
model, an a priori study of the compatibility between the observations and the dynamics of
the model is necessary. In this section, this is done in terms of the multivariate EOF's of the
system.

The observations do not give information about the full state vector x but only about a
small number of its components. Therefore, the classical principal component analysis cannot
be carried out. On the other hand, as the observations can be physically incompatible with
the model physics, a residual may be present when observations are expressed in terms of
the EOF's of the model.

Let x' be the true state of the ocean, X be the mean state of the model and S be the

matrix defined by the EOFs of the model. The true state can always be expressed as
x'=X+ Sp+ ¢, (4)

where p is a vector with the amplitude of each element of the subspace defined by S. e” is

the residual error. The only knowledge of the true state comes from the observations
y° = Hx'+ €°, (5)

where a linear relation is assumed between the observed value y° and the components of
the state vector. e° is the observation error.The innovation vector around the mean state is
defined by

d=y°—- HX. (6)

17



Then, the innovation vector can be expressed as

d=HSu+ He", (7)

where He* = He" + €°.
Equation (7) can be considered as a parametric definition of the error not accounted by
the subspace defined by S at the observation locations, He*, in terms of the coefficients p.

If we require that the two terms of equation (7) have no common information, i.e.,

(HS)" He* =0, (8)

then, we obtain
(HS)' d = Ap (9)
He = [I- HSA™'(HS)'|d (10)

where A = (HS)" HS is a r x 7 symmetric matrix.

Equation (9) is formally equivalent to the equation used by Smith et al. (1996) for
the least-square fitting of EOFs to observations. This is due to the fact that condition (8)
minimizes the projection of the error onto the space defined by the EOFs. Therefore, this
method has the same disadvantages as the method of Smith et al. 1996), i.e., the projection
fails when the number of observations is not large enough (Kaplan et al. 1998).

Kaplan et al. (1998) discuss an alternative EOF fitting by the minimization of
Ju) = (d— HSu) " R7'(d — HSp), (11)

where d is given by equation (6). The set of principal components minimizing (11) is the

18
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solution of

(HS)' R™'d = Ay, (12)

where A’ = (HS)T R™'HS is also a r x r symmetric matrix. In this case, the innova-
tion vector is split in two orthogonal terms with the inner product < a,b >= aT R™!b.
Comparison equations (9) and (12) shows that both methods only differ on the metric of
the inner product. Finally, note that since the components of the state vector, equation (3),
have been normalized by the standard deviation of the model solutions, the estimates of the
obervational error variances (section 3) also have been normalized.

The subspace S is representative of observations if H Sy expresses the same information
as d. Therefore, we can define the representativity of S as the projection between the

innovation vector and H Syu:

Rep = cos(d, HSy), (13)

where the cosine is computed with respect to the chosen inner product.

Because of its definition (13), a representativity value of 1/4/2 & 0.71 means that the
innovation vector is equally projected over the EOF subspace and over its complementary.
That is, representativity values below 0.71 mean that the complementary space represents
the observations better than the EOF basis.

Equations (9)-(13) are applied to the monthly averaged maps of each gridded field
(Reynolds SST, FSU wind stress, and the Kelvin and Rossby modes of the thermocline

depth), and the value of p and R are computed using maps of FSU wind stresses from
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January 1961 to December 1998.

a. FSU wind stress

Figure 6 shows the temporal evolution of the representativity of the EOFs to describe
the spatial patterns of the FSU wind stress anomalies (from the 1961-92 climatology). In
this figure, two curves are shown. The solid one is obtained when the data are limited to
the band 10°S - 10°N, while the dotted line is obtained with 19°S - 19 °N data (i.e., the
maximum latitude at which the ZC model computes SST anomalies). The representativity
of the EOFs measures the ability of such a basis to fit the observations. Therefore, when
the number of basis functions increases or the number of observations decreases, better the
fit could be. Similarly, the representativity decreases when the data are extended to all the
model grid. However, the representativity of both data sets is clearly larger than the critical

value.

b. Reynolds SST

Figure 7 shows the representativity of the EOFs to describe the spatial patterns of the
Reynolds SST fields. The results show the high skill of the model to reconstruct the spatial
distribution of the SST, especially at low latitudes, where the mean representativity is .98.

If figures 6 and 7 are compared to the time evolution of the Nifio-3 SST, it can be observed
that the representativity is maximum at each culmination of warm and cold events and is
minimum at each rapid transition from one event to the other, specially when high latitudes
are considered (the representativity systematically diminishes before and after each event).

This behavior can be explained by the inherent variation of the noise to signal ratio, and by
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the fact that the parameters of the model have been adjusted to simulate the dynamics of

large warm events of the ENSO cycle.

c. Kelvin and Rossby modes of the thermocline depth

Figure 8 shows the variation of the representativity depending on the number of Rossby
modes used. Except for the last months, the maximum representativity is obtained when only
the first Rossby mode is combined with the Kelvin wave. Oscillations of the representativity
of the model are not directly related to the Nifio-3 SST index, and a period of stable high
representativity appears between middle 1995 to the end of 1996, a period quite calm in
terms of Nifo-3 variations.

As in the case of winds and the SST, the representativity decreases when information at
the high latitudes is considered by the use of higher Rossby modes. The mean representativity
decreases from .98 when 1 or 2 Rossby modes are used to 0.96 when 5 or 10 modes are used.

To ensure the compatibility between the physics of the model and the observations, only
the first two Rossby modes will be retained. This does not represent too much loss of
information in the 10°S - 10°N band. For example, figure 9 shows the thermocline depth
in December 1998 derived from sea level (Fig. 9a), and reconstructed by the Kelvin and
the two first Rossby modes (Fig. 9b). The first two modes are sufficient to describe most
of the spatial structure of the thermocline depth. Similarly, the comparison between the
Nifio-3 and Nifio-4 values of the thermocline depth reconstructed using the Kelvin and the

first Rossby mode (not shown) and Fig. 1lc are indistinguishable.

d. Combining observations
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The degradation of the representativity of the model when multiple data fields are con-
sidered simultaneously is shown in Fig. 10. The best interdependency accounted by the ZC
corresponds to the link between the thermocline depth and the SST (dashed line). The lesser
skill of the model to account for the spatial patterns of the wind stress and the thermocline
depth is clear as well (dotted line), specially during year 1994.

When all the observed fields are considered together, the mean representativity of the
model decreases to 0.88, considerably smaller than the representativity of the model when
each field is considered alone, but still higher than the critical value.

Finally, Fig. 11 provides an example of the compatibility between observations of SST
and oceanic equatorial waves with the physics of the model. Compared are the observed
value of the Nifio-3 index with the index associated to the SST anomaly field derived from
the EOF projection to observations of the Kelvin and first Rossby modes. The strong
similarities between both curves suggests that the ocean model captures the basic relationship
between thermocline depth and SST in the eastern equatorial Pacific. This result also shows
the significance of the Kelvin and first Rossby wave to determine the current state of the
thermocline depth over that region.

As a conclusion, in spite of the strong simplifications of the ZC model, and its well known
limitations to locate correctly some spatial features of the physical fields (Zebiak 1986; Cane
et al. 1986; Dewitte and Perigaud 1996), the ZC model is relatively adept at representing
the covariability of the wind stress, the SST and the thermocline depth when observations

are limited to low latitudes, and the thermocline depth is introduced as a function of the
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first Rossby modes.

6. The assimilation method

a. The reduced order Kalman Filter

The reduced order Kalman Filter (ROKF) used in this work is based on SEEK (Singular
Evolutive Extended Kalman Filter, Pham et al. 1998) equations. The SEEK filter is a
sub-optimal version of the Kalman Filter (Kalman and Bucy 1960) based on two hypothesis:
the reduced rank of the error covariance matrices, and the conservation of the rank in time.
Although these hypothesis cannot be justified for a nonlinear system, the SEEK filter has
been used successfully to assimilate T/P SSH into a primitive equation tropical Pacific ocean
model (Verron et al. 1999), and to reconstruct the mesoscale circulation of the mid-latitude
western Atlantic circulation (Brasseur et al. 1999).

Analysis-step equations of the SEEK filter are directly derived from the analysis equations

of the Kalman filter by expressing the error covariance matrix, P/, at time t, as
P! = SiA. S}, (14)

where subindex k refers to the time #x. If n is the number of components of the state vector
(3), then matrices Pi, Sk, and Ay, are of order n. However, if the rank of P,{: is 7, only r
columns of matrices S; and Aj should be retained. Thus, the numerical cost of the analysis
step is reduced if the Kalman filter equations are expressed in terms of the r-dimensional
space defined by the columns of Si.

Following the notation recommended by Ide et al. (1997), if y} represents a set of
observations at time t;, and x£ is the current guess of the system state, the new estimate
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of the state of the system, x¢, is obtained using equations (see Pham et al. 1998):

Awer = [A7 4+ (Hi ST RV HLS (15)
Ki = SiArer (HeSk)™ Ry, (16)
x¢ = x! + K, [yz - H; x{] ) (17)
P! = S;Ar1 S/, (18)

where H is the observation matrix, relating the components of the state vector (3) with the
observations y°. The relative weight of the first guess and the observations is given by the
gain matrix Ky, which depends on error covariance matrices Pi (estimation of the error of
x/) and R; (estimation of the error of y°). Equations (15)-(18) are valid in the measure
that equation (14) is valid.

Under the hypothesis that the model is linear and exact, the rank of the error covariance
matrix is constant in time, and the the time evolution of P/ depends only on the time
evolution of the columns of S; (Pham et al. 1998). Then, the forecast-step of the Kalman

Filper can be rewritten as:

x,’:+1 = Mxj, (19)
Si+1 = MSy, (20)
P£+1 = Siy1Me1 SZ+1- (21)

The generalization of equations (19)-(21) to a non-linear, non-perfect model is not straight-
forward because the rank of the covariance matrices may not be conserved in time, because

of the dynamical coupling between the space defined by S; and its null-space, i.e., equation
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(21) is not longer valid. Moreover, because of the nonlinearity of the model, equation (20)
cannot be solved explicitly, and only an approximation of the time evolution of the sub-space
basis can be obtained.

These facts lead us to use an alternative method of equations (20)-(21). Let dj be the

innovation vector at time {;, about the current forecast of the state of the system

de = y; — Hx{. (22)

It can be shown that
E[did]]| = HP{H" + R, (23)
= HSA,(HS)" + R} (24)

where R} contains both the observational error covariance and the error covariance on the

null-space of S (Cane et al. 1996). Now, if equations (7)-(9) are used, we obtain
did{ = HSup  (HS)" + He* e H' (25)

because of the orthogonality of the decomposition of the innovation vector. Note that the
residual vector e* is a function of the observational error and the error not accounted by the
subspace defined by S.

Because of the similarity between equations (24) and (25), we use ppu as an ad hoc ap-
proximation of the error covariance on the analysis subspace, A;. Two relationships between

tr and Ay are used here.

Ay = diag(ppg ), (26)
1 k

or A}c = -I;Z,uj,u;r (27)
Jj=1
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In any case, this methodology allows us to compute a non-stationary, non-diagonal es-
timate of the forecast error covariance matrix SA; ST. By using equation (26) or (27), the
parameterization of the dynamical coupling between the subspace defined by S and its com-
plementary, and the error of the model, are not necessary because A; comes directly from
the current misfit between the observations and the current state of the system.

In summary, the ROKF algorithm uses equation (19) to obtain the current state of the
system. Equations (22), (7)-(9) are used to compute the set of principal components s; for
the estimation of the current forecast error covariance by equations (26) or (27). Finally,

equations (15)-(17) are used to correct the state of the system.

b. Nudging the surface wind stress

The performance of the reduced order KF will be compared with the performance of
the nudging of surface wind stress in the equation for wind stresses. The method used
here replicates the method proposed by Chen et al. (1995). That is, at each time step the
anomalous model wind stress 7 = (7, 7,) is substituted by a7, + (1 — a)7, where 7, is the
observed anomalous wind stress. Following Chen et al. (1995), « is a function of the latitude.
In our experience of assimilation, « is a linear function of the latitude, with a value of 0.25
near the equator, and increasing by 0.1 per grid point up to the latitude where it attains the
value 0.55, which is then held constant. That is, the model winds are given more weight in
the equatorial region and less weight in the higher latitudes.

Neither nudging or the Kalman filter use the hypothesis of a perfect model. In the case
of nudging, a new term is introduced into the dynamical equations in order to correct the

output of the model. As this term is linear by respect the corrected field, the behavior of
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the model dynamics is linearized when the data-model misfits are important. On the other
hand, in the present application, the nudging of the wind stress does not modify the value
of the prognostic fields (the Kelvin amplitude, and the Rossby component of the upper layer
depth anomaly), but its forcing term. That is, nudging does not modify the current state
of the system, but its ulterior time evolution. This approach strongly reduces the possible
dynamical imbalances between the prognostic fields. On the contrary, algorithms based on
the Kalman filter compute the dynamical evolution of the system with no relaxation term,
allowing the full development of the nonlinearities of the dynamics. Account for the model
error is done by computing an estimate about the error of the new system state. Therefore,
misstatements in the determination of such an error are allowed to propagate in a nonlinear
way, contaminating all the dynamical scales of the system. On the other hand, all the
components of the system are updated by equation (17). This allows a potential way for a
faster extrapolation of the information from observations to all the variables of the model,
but also increases the risk of dynamical imbalances, i.e. initialization shocks may exist after

each assimilation step.

7. Model initialization experiments

A set of assimilation experiments, using both nudging of the wind stress and the ROKF
presented in the previous section, are performed in order to obtain the initial conditions to
predict the time evolution of the Nino-3 SST index.

Topex/Poseidon data is available since October 1992. Then, prediction experiments

are restricted to the period January 1993 - December 1998. Note that the goal of these
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experiments is to examine the potential of a ROKF to assimilate, directly and simultaneously,
different types of data into the ZC model, but not to give an exhaustive comparison between
different assimilation methods (this would require longer time series, including several warm
and cold events).

Nudging and ROKF also differ in the temporal distribution of the observations used to
identify the state of the system. In the case of nudging, the coupled model is integrated
from January 1961 until the initial time for the forecast. During this period, the model wind
stress is relaxed towards the observations. Thus, the final state is used as initial conditions
for the prediction of ENSO. This means that initial conditions for ENSO forecasts are a
function of the state of the system from 1961. On the contrary, the ROKF is initialized on
October 1992 with the long term mean anomaly of the model. Then, observations are used
to give a first estimate of the state of the system at this time. Then, sequential assimilation
cycles are done until reaching the initial time for the forecasts.

Initial states for 15-month ENSO forecasts are computed each month from January 1993
to December 1998. ENSO forecasts are compared with observations via the NINO 3 index.
The correlation and the root mean square (RMS) of the error between the predicted values

and the observations, are used to assess the performance of the initialization.

a. Nudging the wind stress

The first experiment presented here uses the nudging method to retrieve the initial condi-
tions for ENSO forecasts, and thereby establish a baseline for the ROKF experiments. Wind
observations are considered on the model grid, that is between 19°S - 19°N, and are the only

data assimilated.
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Figure 12 displays Nifio-3 index forecasts with these experiments. The thick solid line
represents the hindcast Nino-3 SST index, the thin solid lines show the 15 month forecasts,
and the dashed-line indicates the observed value. The curves show low correlation between
hindcasts and observations during the whole period under consideration, indicating that
nudging of the wind stress is not able to reproduce the temperature of the eastern Pacific.
Forecasts without assimilation (thin solid lines) show little dispersion by respect the time
evolution with assimilation (thick solid line), indicating small impact of new observations
onto the evolution of the system, i.e., a strong inertia of the model. This explains the delay
to identify the onset and the climax of the 1997 warm episode.

Figure 13 compares the correlation and RMS error for different lead time predictions
with the initialized model, and the Nifio-3 persistence. Zero lead time represents the initial-
ization time. The results show the small correlations at short lead times, errors greater than
persistence for lead times shorter than 8 months, and better than persistence for longer lead

times.

b. Reduced Order Kalman Filter

The ROKF is now used to assimilate simultaneously wind stress, SST and the Kelvin
and the first Rossby mode of the thermocline depth into the ZC model. As the assimilation
procedure starts in October 1992, the assimilation results might still be very sensitive to the
initial conditions. As before, each analyzed field is saved to be used as initial conditions for
a fifteen-month forecast.

Initialization experiments are performed with different values of r, i.e. with different

number of multivariate EOFs. The correlation between the observations and the associated
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lead time forecasts is displayed in Fig. 14(a). This plot shows the correlations for values
of r ranging from one to seventy. The plot also displays the correlation obtained with the
nudging initialization. The ROKF initialization is providing higher correlation at short time
leads than nudging does. This is related to the fact that SST observations are being now
assimilated. The most striking feature of these results is that the method is robust only for
lead times up to 4 or 5 months. This fact may be related to the results of Goswami and
Shukla (1991) who found that the growth of small initial errors in the ZC coupled model
is governed by processes with two well-separated time scales. The fast time scale process
induces error doubling scales of about 5 months. The slow time scales induces error doubling
scales of about 15 months. Therefore, even if the ROKF seems to be able to identify the
current state of the system (high correlation at the initial time), the method is unable to
capture the fast-growing error components, and the correlation between the prediction states
and observations diminishes for lead times longer than the doubling scales of such errors.
Different initialization experiments of the coupled model have been performed by using a
non-diagonal A (equation (27)) instead of a diagonal matrix (equation (26)), or by using the
error-metric, equation (12), instead of the identity metric, equation (9); or by assimilating
SST observations distributed over all the model grid instead of SST observations limited
within the band [10°S-10°N]. In all the cases, the robustness of the method is limited to 4
to 5 months. As an example, Fig. 14(b) displays the correlation between observations and
forecast for one of these initialization experiments, for which equations (27), (12) have been
used to assimilate observations with SST observations distributed over all the model grid.

The comparison of both panels of Fig. 14 shows several common features. Note that
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high prediction skill of the month-to-month predictions is obtained by using a small number
of modes (7 EOFs), and the use of higher order, non statistically significant modes does not
improve the correlation for such short-term forecasts. The fact that seven modes are enough
to reach a high correlation skill, is explained by the high amount of variance explained by
the first modes, so the basic structure of the state of the system is recovered by using a
small number of modes. However, the rapid decrease of the correlation between forecasts
and observations indicates that these modes are not able to identify the time evolution of
the system. Higher order modes are necessary to extend the lead times of the predictions,
indicating that the lead order EOF modes capture the stationary variance of the fields, but
not its time evolution.

Another common feature of all these initialization experiments is the fact that there
always exists a range of optimal values for the number of EOFs providing high forecast-
observation correlation values for lead times ranging from 9 to 15 months. In all the ex-
periments, the range of optimal values is always located between 40-60 modes, consisting of
more than one single value, which implies that such high correlations are not due to chance.

Figure 15 shows ENSO predictions obtained by initialization experiments using 20 EOF's
(Fig. 15(a)), and 47 EOFs (Fig. 15(b)). In these experiments, equations (9), and (26)
are used, and SST observations are extended until 19°S - 19°N. Hereafter these experiments
are cited as r20 and r47. Comparing the thick solid line on Figs. 15(a) and 15(b), it can
be noticed that the initial conditions of the prediction experiments become closer to the
observed value as the number of modes increases.

The main shortcoming of the r20 initialization is the inability of the forecasts to identify
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the termination of warm events, specially at the end of 1993, or at the end of 1998. To
determine the reason for this, we compare the initial conditions given by these initialization
experiments. Figure 16 shows the difference between r20 and r47. Fields with differences
larger than two standard deviations are the zonal wind stress and the Kelvin wave amplitude.
The impact of these differences has been examined by resetting to zero the wind stress
components or the Kelvin amplitude of the initial conditions provided by the experiment
r47. The correlation and the error RMS of these experiments are shown in Fig. 17. Note the
small impact of resetting the wind stress to zero on the prediction skill of the solutions, and
the larger impact of resetting the Kelvin amplitude. This behavior was expected because the
oceanic Kelvin wave is one of the prognostic variables of the model, while the atmospheric
model mainly depends on the current SST distribution. Examining the initial Kelvin and
Rossby fields in experiment r20 (not shown), it was found that both fields were too weak near
the western boundary (Fig 16 shows that the differences of the Rossby waves are generally
large there). Then, both propagation of the Kelvin wave as well as the boundary reflection
of Rossby waves, provide too weak Kelvin waves that rapidly contaminate the solution at the
central and eastern equatorial Pacific. Note that the failure of the lead multivariate EOF's
to reconstruct the required wave amplitudes is directly related to one of the well known
properties of the model, i.e. the weak variability of the coupled model west of the dateline
(Cane et al. 1986).

Initial conditions obtained with the r47 experiment are shown in Fig. 18. Note that the
region, near the western boundary of the system, with no observations of Kelvin and Rossby

waves (see Fig. 1), has now been filled (Fig. 18), according to the dynamics of the model, i.e.,
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the delayed oscillator mechanism. All fields show a good agreement with the observations,
even if, as discussed before, none of the reconstructed fields displays the variability of the
observation near the western boundary. Forecasts from these initial conditions successfully
predict the warm event of 1997-98 by identifying its onset, rapid increase of the temperature,
amplitude of the event, and its duration. Forecasts since May 1996 predict a warm event for
the 1997, indicating that preconditions of such an event may be present in the tropical Pacific
at least fifteen months prior to the event, in agreement with the remarks of McPhaden and Yu
(1999). These experiments also indicate that a nonlinear, coupled model based on the delayed
oscillator may generate the correct amplitude of the warm event starting from conditions
before November 1996, the time when wind anomalies associated with the Madden-Julian

Oscillation appear. Such anomalies have been suggested as being important for the timing

and amplitude of the event (McPhaden and Yu 1999).

1) Sensitivity to the wave errors

The error of the Kelvin and Rossby modes have been determined by assuming that the
reduced gravity approach is strictly verified over the band [10°S-10]degN] (see section 3).
The sensitivity of the results to these values has also been examined. This has been done
with six additional experiments. In these new model initializations, the Kelvin and Rossby
errors have been, separately or simultaneously, increased (and diminished) 20% of the value
given in section 3.

The results, not shown, show small impact to changes on the error estimates for the Kelvin
and Rossby modes. Results are almost insensitive to changes on Rossby error estimates

because of the large number of observations, 2378, being assimilated. Results are slightly

33



more sensitive to changes in the Kelvin error estimate. When the Kelvin error estimate is
increased 20%, the skill of the forecasts diminishes for 6 to 8 month lead time predictions,
but remain unchanged for higher lead times. However, when the Kelvin error estimate is
reduced 20%, we have noticed a more noticeable decrease of the skill of the predictions for
lead-times larger than 12 months. Thus, the Kelvin error estimate is low enough to provide
an estimate of the thermocline structure over the equator, but is large enough to avoid an

overfitting that degrades the prediction for interanual time scales.

8. Summary

A simplified reduced order Kalman Filter has been applied to the coupled ocean-atmosphere
nonlinear model of Zebiak and Cane. The multivariate EOFs of the coupled model are used
to reduce the dimension of the problem. In the case of the state vector used in this work, the
size of the covariance matrices P used by the classic Kalman filter is 5 Gb. When the ROKF
is used with r = 100, the size of the matrices S and A is 14 Mb and 40 Kb respectively. The
ROKF is used to assimilate fields of the SST, surface wind stresses and thermocline depth
(derived from the T/P sea level) into the coupled model every month.

Projecting the Kalman Filter equations onto the multivariate EOFs of the model means
that, although incomplete, the physics of the model is used to reduce the degrees of freedom
of the KF algorithm. To ensure a relative compatibility with the model, observations are
limited to the band 10°N - 10 °S. A representativity study shows that the ability of the EOF's
to account for the covariability of the observed fields decreases at high latitudes.

The numerical cost of the filter is highly reduced by computing an estimate of the forecast
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covariance matrix, on the subspace defined by the multivariate EOFs, from the available
observations. On the other hand, as the time evolution of A comes from the observations
instead of being computed by the time evolution of the error covariance matrix, the dynamical
interaction between the EOF subspace and its nullspace has been avoided.

The prediction skill of the forecasts initialized from the outputs of the filter has been
compared to persistence and the nudging of surface wind stress. The forecasts obtained
from the filter show higher correlations with observations than the results coming from the
nudging experiment for all lead times. However, the method is robust, to changes in the
number of EOFs for forecasts shorter than 4 to 5 months, indicating that the method is not
able to identify the error associated with the fast error modes of the model described by
Goswami and Shukla (1991). The evolution of the forecast skill as a function of the number
of modes is insensitive to changes in the metric used to fit the EOF's to the observations,
and to how the current value of A is constructed. Therefore, such a limit may be related to
the nature of the basis functions, i.e. the multivariate EOFs. These functions describe the
stationary modes of variance of the fields rather than the time evolution of perturbations of
the system. Therefore, a natural extension of the present work is the use of basis of functions
accounting for the dynamic evolution of the fields, as the singular vectors of the transition
operator of the ZC model, or the evolutive version of the SEEK filter, allowing the time
evolution of the matrix S.

Besides the inability of the EOF basis to capture the growing errors of the coupled
model, the failure of the lead EOF's to provide initial states containing sufficient information

to identify the actual evolution of the system is related to known shortcomings of the physical
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model itself. Thus, a common feature of all the experiments performed by the authors is
that the optimal number of EOFs is always larger than the number of modes passing the
statistical significance test of Overland and Preisendorfer (1982).

Despite the fact that the filter has been shown to be robust for time scales shorter than
4-5 months, the filter has provided initial conditions of the tropical Pacific, predicting the
onset of the 1997-98 warm event fifteen months before its occurrence. These predictions
start from states prior to the first westerly wind burst associated with the Madden-Julian
oscillation, often suggested as a triggering mechanism for the onset of warm events. Such a
result indicates the possibility that the delayed oscillator mechanism may itself be the origin

of the correct amplitude of the 1997-98 El Nifio event.
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Figure Captions

Figure 1: Longitude-time for observed fields of zonal wind stress, Kelvin amplitude, first
Rossby mode, and sea surface temperature. Plots dispay averaged values over the band

[5°S-5°N].

Figure 2: Convergence of the error of the Kelvin wave amplitude and the error of the Rossby

field as the number of Rossby modes increases.

Figure 3: Eigenvalue spectrum of the multivariate EOFs of the coupled model of Zebiak and

Cane. Also shown are the 95% confidence levels (dashed line) from a Monte Carlo simulation.

42



Figure 4: First multivariate EOF: (a) Sea Surface temperature anomaly. (b) Surface wind
stress anomaly. (c) Zonal variability of the equatorial Kelvin wave. (d) Rossby component

of the upper layer depth anomaly. Units are standard deviations.

Figure 5: Second multivariate EOF: (a) Sea Surface temperature anomaly. (b) Surface wind
stress anomaly. (c) Zonal variability of the equatorial Kelvin wave. (d) Rossby component

of the upper layer depth anomaly. Units are standard deviations.

Figure 6: Ability of the multivariate EOFs to represent the spatial structure of the FSU
wind stress during the period Jan 1961 to Dec 1998. Solid line: data is limited to the band
10°S - 10°N. Dotted line: data is for the band 19°S - 19°N.

Figure 7: Ability of the multivariate EOFs to represent the spatial structure of the Reynolds
SST during the period Nov 1981 to Dec 1998. Solid line: data is limited to the band 10°S -

10°N. Dotted line: data is on the band 19°S - 19°N.

Figure 8: Ability of the multivariate EOFs to represent the spatial structure of the ther-
mocline depth derived from Topex/Poseidon sea surface topography during the period Oct
1992 to Dec 1998. The maps of thermocline depth are decomposed in terms of meridional
equatorial modes. The different representativity with different number of different Rossby

modes (in addition to the Kelvin mode) is shown.

Figure 9: Spatial structure of the thermocline depth monthly anomaly in December 1998.
(a) Derived from Topex/Poseidon sea surface level. (b) Reconstructed from the wave de-
composition of the previous field. The modes used are the Kelvin and the two first Rossby

modes. Amplitude in cm.
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Figure 10: Ability of the multivariate EOF's to represent the spatial structure of all the data

combined during the period Oct 1992 to Dec 1998.

Figure 11: NINO 3 index derived from observations (red line), and derived by projecting
the sea level (Kelvin and first Rossby mode) observations onto the SST via the multivariate

EOFs of the model (black line).

Figure 12: 15-month forecast of the NINO3 SST index. The thick solid line is associated to
the initial conditions. Dashed line is the observed value. Thin solid lines show the evolution
of forecasts starting every month. The initialization experiment is done by nudging the

surface wind stress.

Figure 13: Forecast skill measured by the correlation (a), and the RMS error (b), between
predicted and observed NINO3 SST index from January 1993 through December 1998. The

initialization experiment is done by nudging the surface wind stress.

Figure 14: Forecast skill measured by the correlation between predicted and observed NINO3
SST index from January 1993 through December 1998. The number of EOFs used with the
ROKEF ranges from one to seventy. The ordinate axis represents the lead time (in months).
(a) SST observations are limited to the band [10°S-10°N], and the identity metric is used to
fit the EOFs to the data. (b) SST observations are assimilated over all the model grid, and

the metric of the data-EOF fitting is given by the inverse of the error covariance matrix.
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Figure 15: 15-month forecast of the NINO3 SST index. The thick solid line is associated to
the initial conditions. Dashed line is the observed value. Thin solid lines show the evolution
of forecasts starting every month. The ROKF with 20 EOFs (a), and 47 EOFs (b) are used.
The metric is the identity matrix, Ay = diag(sis]), and SST is assimilated over all the

model grid.

Figure 16: Longitude-time plots of the difference between r20 and r47, averaged over the

band [5°S-5°N].

Figure 17: Forecast skill measured by the correlation (a), and the RMS error (b), between
predicted and observed NINO3 SST index from January 1993 through December 1998. The
solid line corresponds to the experiment r47. Dashed line is obtained when the initial state
resulting from experiment r47 is modified by resetting to zero the surface wind stress. The

dash-dot line is obtained as before but resetting to zero the Kelvin wave amplitude.

Figure 18: Longitude-time plots of the initial conditions given by experiment r47, averaged

over the band [5°S-5°N].
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